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I. INTRODUCTION

Multivariate analysis can be thought of as a methodology

for detection, description and validation of structure in p-

dimensional (p> 1) point clouds. Classical multivariate analy-

sis relies on the assumption that the observations forming the

point cloud(s) have a Gaussian distribution. All information

about structure is then contained in the means and covariance

matrices, and the well-known apparatus for estimation and in-

ference in parametric families can be brought to bear. The un-

comfortable ingredient in this approach is the Gaussianity as-

sumption. The data may be Gaussian with occasional outliers

or even the bulk of the data simply might not conform to a

Gaussian distribution. The first case is the subject of robust

statistics and is not treated here. We discuss methods that

do not involve any distributional assumptions. In this case.

*Work supported by the Department of Energy under contract

[DE-ACO3-76SF00515

(Presented at Army Research Office Conference on Modern Data
Analysis, North Carolina, June 1980)
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structure cannot be perceived by looking at a set of estimated

parameters. An obvious remedy is to look at the data them-

selves, at the p-dimensional point cloud(s), and to base the

description of structure on those views. As perception in

more than three dimensions is difficult, the dimensionality of

the data first has to be reduced, most simply by projection.

Projection of the data generally implies loss of information.

As a consequence, multivariate structure does not usually show

up in all projections, and no single projection might contain

all the information. These points are further illustrated in

Chapter 2. It is therefore important to judiciously choose

the set of projections on which the model of the structure is

to be based. This is the goal of projection pursuit proce-

dures. A paradigm for multivariate analysis based on these

ideas is presented in Chapter 3.

By design, projection pursuit methods are ideally suited

for implementation or interactive computer graphics systems.

The potential of interaction between user and algorithm was

convincingly demonstrated in the PRIM-9 system for detection

of hypersurfaces and clustering (see Fisherkeller et al [1974]);

this system is discussed in Chapter 4, P-ocedures for multipl

regression and multivariate density estimation based on pro-

jection pursuit are outlined in Chapters 5 and 6. Common pro-

perties of all projection pursuit procedures are discussed in

Chapter 7.

2. DETECTION AND DESCRIPTION OF

STRUCTURE WITH PROJECTIONS

Our goal is to detect and describe multivariate structure

using projections of the data. However, structure, if present,

____________ I____I
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Fig. 1 Structured point cloud in two dimensions

may not be ap parent in all projections. -This is illustrated

by the following examples. Figure 1 shows a point sample

drawn from a bivariate distribution. The apparent structure

of the point cloud (separation into two clusters) would be re-

vealed by projection onto the subspace spanned by the vector

(1, -1), whereas no structure would be apparent in & projec-

tion on the subspace spanned by the vector (1, 1).

The data for Figure 2 are generated from the regression

model Y - X1+ X 2 + E with (X1, X 2) uniformly distributed In

(-,3x [-1.11 and E-N(O,O.Ol). Figure 2a shows a projec-

tion on the two-dimensional subspace spanned by Y and the

linear combination Z - X1+ X 2* This projection clearly

showe the association between the predictors X 1 and X2 and

the response Y. A similar plot with Z X 1 X2 . Figure 2b,

is clearly less structured.

.4*• #o
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Fig. 2. (a) Projection of data from model Ywu1 +X2 +C on

plane spanned by i and Z-X I+X 2. (Y Is plotted on the vertical

axis). (b) Projection of date from nodal -X 1 +X2+1E on plane
spanned by T and ZX ' X2 .
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These examples show that it in Important to search for

structured projections. This process is called projection

pursuit.

It is easy to envision situations where not all the infor-

mation about the structure in contained in a single projection.

Consider the regression example above but with Y - X1 . X2 + &

Figures 3a and 3b show two projections with Za = Xi - X2 and

Zb = X1 + X2. To understand the pictures, note that the sim-

ple coordinate transformation Za - X1 + X2, Zb a X 1 - X2

allows one to express the response as Y - .25 (Z2 - z2 ). It

is also interesting to notice that the quadratic dependence

on Z a is washed out due to variability caused by the depend-

ence on Zb, and vice versa. This suggests that once a struc-

tured projection has been found, the structure should be re-

moved so that one obtains a clearer view of what has not yet

been uncovered.

~ Al
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3. A PROJECTION PURSUIT PARADIGM

The discussion in the previous section motivates the fol-

lowing schema for a class of procedures modeling structure in

multivariate data:

(i) Choose an initial model.

Repeat

(Ii) Find a projection that shows deviation of the

data from the current model, indicating pre-

viously undetected structure (Projection Pursuit).

(iII) Change the model to incorporate the structure

found in (ii) (Model Update).

Until the current model agrees with the data in all prc-

jections.

Such projection pursuit procedures can be implemented in

batch mode. In this case, a figure of merit must be defined,

which measures the amount of deviation between model and data

revealed in a projection. This figure of merit usually is

optimized by numerical search, although in some simple cases

optimization can be done analytically. If the optimum figure

of merit is less than a threshold, data and model are said to

agree. Batch implementations of projection pursuit regression

and density estimation are described in Sections 5 and 6.

By construction, projection pursuit procedures are Ideally

suited for implementation on interactive computer graphics

systems. Interaction between program and user can help in

- search for interesting peojections

- specification of model update

- termination

- interpretation of structure.

.. .4.,...
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Although projection pursuit procedures are useful in batch

mode, their full power comes to bear in an interactive envi-

ronment.

4. THE PRIM-9 SYSTEM

PRIM-9 (Fisherkeller et al. (1974]) is a system for via-

ual inspection of up to nine-dimensional data, mainly intended

for detecting clusters and hypersurfaces. It was implemented

on an interactive computer graphics system which allows the

modification of pictures in real time and thus makes it pos-

sible to generate movie-like effects. Its basic set of oper-

ations consists of

Projection: The observations can be projected on a sub-

space spanned by any pair of the coordinates; the pro-

jection is shown on a CRT screen.

Rotation: A subspace spanned by any two of the coordin-

ates can be rotated. If the projection subspace and the

rotation subspace share a common coordinate, the rota-

tional motion causes the user to perceive a spatial pic-

ture of the data as projected on the three-dimensional

subspece defined by the coordinates involved. When the

user terminates rotation in a particular plane, the old

coordinates in that plane are replaced by the current (ro-

tated) coordinates. This makes it possible to look at

completely arbitrary projections of the data, not neces-

sarily tied to the original coordinates.

Masking: Subregions of the p-dimensional observation

space can be'specified, and only points inside the sub-

region are displayed. Under rotation, points will enter

and leave the masked region.
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Isolation: Points that are masked out (i.e., not visible)

can be removed, thus splitting the data into two subsets.

The first two operations, projection and rotation, allow

the user to perform what one might call "manual projection

pursuit". Isolation, the splitting of the data set into sub-

sets, provides a rudimentary form of structure removal. When

clustering is detected, the clusters can be separated and

each of them examined individually. This process can be

iterated.

Although several have been implemented (Stuetzle & Thoma

[1978], Donoho et al [19811), systems like PRIM-9 have not

yet found widespread use. The main reason has been the price

of the necessary computing equipment. The processing power

needed to compute rotations at a reasonable update rate is

quite high (on the order of 60000 multiplications per second

for 1000 observations and 10 updates of the picture per

second). Another major cost has been the graphics device,

which must have a sufficiently high bandwidth (typically a

megabaud). The situation, however, is rapidly changing. New

16-bit microprocessors provide a speed close to that required

for an interactive use of projection pursuit procedures. The

price of graphics systems, especially raster scan devices, is

falling dramatically. The graphics system at SLAC used for

the Implementation of PRIM-9 cost $175,000 in 1967. Today

the price of a comparable system is $15,000.

5. PROJECTION PURSUIT REGRESSION (PPR)

The goal of regression analysis is to find and describe

the association between a response variable Y and predictor
n

variables X ... X, using a sample ((yI)}ll. PPR attempts

_ __._ _,___

m, |nnd
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to construct a model for this association (or, in more clasi-

cal terms, to estimate E(Yli)) from the information contained

in projections of the data on two-dimensional subspaces span-

ned by Y and a linear combination Z - a . X. The algorithm

exactly follows our projection pursuit paradigm:

(i) Choose an initial model, for example mOX) - conet.

Repeat

(ii) Find a projection that shows deviation of the data

from the model, i.e., find a direction such that

the current residuals, ri~yi-m(xi), show a depend-

ence on Z-O . X

(iii) Describe this dependence by a smooth function s(Z).

Update the model:

M(X) - m(X) + s(O . X)

Until data and model agree in all projections.

The model after M iterations has the form

M
m(x) m() + s (am. X). (1)

PPR allows the modeling of smooth but otherwise completely

general regression surfaces. So far, a batch version has

been implemented. Such an implementation requires the speci-

fication of-a figure of merit for projections and a method

for summarizing a smooth dependence ("smoother"). Smoothing

is generally accomplished by local averaging; the value of

the smooth s at a particular point z is obtained by averaging

the current residuals r for those observations with values

of zi close to z. The size of the neighborhoods within which

averaging takes place is called the bandwidth of the smoother.

A smoother suitable for use with PPR and guidelines for choos-

Ing the bandwidth are described and discussed in Friedman and

Stuetzle (1981).
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A choice for the figure of merit is suggested by figures

2a and 2b. The (inverse) figure of merit is taken to be the

residual sum of squares around the smooth of the current re-

siduals versus a . X. It is small in Figure 2a, where the

smooth could closely follow the observations, and large in

Figure 2b, where the smooth would be roughly constant. This

definition of the figure of merit implies that in each iter-

ation the model is updated along the direction for which the

update yields the biggest reduction in residual sum of squares.

As with any stepwise procedure, one needs a criterion for

stopping the iteration. Stopping too soon can increase the

bias of the estimate, while not stopping soon enough can un-

duly increase its variance. "Optimal" termination of step-

wise procedures has been studies (see Stone, [1981]); these

methods can be applied here. In practice, the iteration is

usually terminated subjectively, based on differences between

successive values of the residual sum of squares. In additin,

graphical inspection of sm (m. X) can be used to judge whether

the corresponding term should be included in the model. If

the graph of s3 shows a noisy pattern with no systematic ten-

dency, then its inclusion can only increase the variability

of the estimate. On the other hand, a definite dependence in-

dicates that s deals with an inadequacy of the present model.n

The following example illustrates the operation of PPR. A

sample of 200 observations was generated according to the

model

Y - 10 sin(rX1 X2 ) + 20(X 3-0.5) 2 + 10X4 +5X 5 +0X 6 +E

with (X,...,X6) uniformly distributed in [-1,11 6 and E-N(0,l).

Figure 4a shows Y plotted against the best single predictor,

.7
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14. and the corresponding smooth. (The response Y is plotted

on the vertical axis, X4 on the horizontal axis. The *+"

symbols represent data points, numbers indicated more than 1

data point. The smooth is represented by the "*" symbols.)

Figure 4b shows Y plotted against the linear combination * X

found in the first iteration with al = (0.41, 0.51, -0.04,

0.69, 0.31, 0.0). The association is seen to be approximamly

linear. The model after the first iteration thus is a plane

which, in this case, closely coincides with the least squares

plane'through the data. Figure 4c shows the residuals from

this model plotted against the second linear combination &2.X

found by the algorithm, with Q2 = (-0.14, 0.0, 0.99, 0.04,

0.0, -0.03). This iteration is seen to incorporate the quad-

ratic dependence of the response on X3 iqto the model. Fig-

ure 4d shows the residuals after two iterations plotted

against the third linear combination with C3 - (.0.70, 0.72,

0.01, 0.03, 0.02, 0.00). Figure 4e shows the residuals after

three iterations plotted against the fourth linear combin-

ation, with a4 - (0.80, -0.59, -0.10, 0.04, 0.01, 0.0).

The last two iterations are seen to model the interaction

term sin(nX1 X2 ). A further iteration failed to substantial-

ly improve the model.

For a more complete discussion of PPR and additional ex-

amples, see Friedman and Stuetzle (1981].
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6. PROJECTION PURSUIT DENSITY ESTIMATION (PPDE)

The goal of density estimation is to estimate the multi-

variate distribution of a random vector X on the basis of an

i.i.d. sample x1 .. x n . Our procedure again follows the pro-

jection pursuit paradigm:

(i) Choose an initial model for the density, for example,

so - multivariate normal with sample mean and covariance mat-

rix.

Repeat

(ii) Find a projection that shows deviation of the data

from the model; i.e., find a direction such that

u(±..1), the model marginal along a, differs from

p ), the (estimated) data marginal along a.

(ii) Define an "augmenting function" f(j. X) as the

quotient of data and model marginals

Aow
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f(a .X) -

Update the model so that it and the data agree in

the marginal along a:

ae(A) #- aex M• f (a.x

Until data and model agree in all projections.

The model after N steps of the iteration is of the form

H
0(x) - to(X) • f (a . X). (2)

In step (Ili) of the algorithm, the marginal of the data

along must be estimated and the marginal of the current

model must be computed. The data marginal presents no prob-

lem. It can be estimated by projecting the data onto a and

using a one-dimensional kernel or near neighbor estimate.

The analytic computation of the model marginal can be very

difficult because it requires a (p-l)-dimensional integration.

We perform the integration by Monte Carlo, generating a sam

from the model and proceeding as in the estimation of the

data marginal.

As in the case of PPR, only a batch version of PPDS has

so far been implemented. At each iteration, the direction a

is chosen such that the update of the current model yields

the largest improvement in goodness-of-fit as measured by the

likelihood of the sample. Termination rules are analogous to

those used in PPR.

The following example illustrates the operation of PPDE.

The data for the example are the concentration levels of four

hormones in blood measurements of 256 children. The purpose

of applying PPDE to these data is to determine if a Gaussian

distribution represents a reasonable approximation to the

p i-- - - - ,.- . . . . . . . .
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data density. Figures 5&-Sd compare the experimental data to

a Monte Carlo sample drawn from a Gaussian density with the

sample mean and covariance, as projected onto each of the mea-

surement coordinates. The histogram of the experimental data

is drawn with solid lines; the histogram of the Monte Carlo

data is indicated by "*" symbols. Inspection of these projec-

tions indicates that although there are possibly some discrep-

ancies, a Gaussian density might be a reasonable approximation

to the data.

Figures 6a-6e show results for three iterations of PPDE.

The solution direction #4 associated with the first iteration

is mainly a combination of the second and third coordinate mea-

surements. The data distribution (Figure 6a) is seen to be

somewhat skew and more peaked than the corresponding Caussian.

The discrepancy between the data and the Gaussian model is

much more pronounced in this projection than on any of the

original coordinate measurements. Figure 6b plots the augmen-

ing function f1 (or . X).

The second linear combination a2 mainly involves the third

and fourth coordinates. The principal difference between the

current model pl(X) and the data is seen to be a substantial

skewness to the left (Figure 6c). Figure 6d shows the corres-

ponding augmenting function f2 " The linear combination associ-

ated with the third projection mostly involves the first and

second coordinates. Although this iteration is trying to

account for an apparent additional skewness of the data (Figure

6e), the effect is seen to be relatively small and perhaps not

significant.

, , . • .......................... ....... :.
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DATA AND CURRENT MODEL PROJLCTIONS
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DATA AND CURRENT MODEL PROJECTIONS
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DATA ANO CURRENT MODEL PROJrCTIONS
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DATA AND CURRENT MODEL PROJLCTIONS
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Fig. 6e.

Application of PPDS to these data reveals that a Gaussian

model provides a considerably less adequate description than

indicated by the coordinate projections alone. The associated

graphics gives some insight into the nature of the nonnormality

of the data.

7. DISCUSSIOE

All projection ptursuit procedures share some common advan-

tages:

- Since all estimation is carried out in a univariate setting

the large bias of kernel or near neighbor estimates in high

dimensions can often be avoided.

- PP procedures do not require specif~cation of a metric in

the observation space.

- Bas Is encountered with stepwise procedures when many terso

are required to provide a good representation of the model

, ' , I I
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underlying the data, but only a few can be estimated due to

insufficient sample size. In these cases, it is important

that the first few terms be able to approximate a wide

variety of functions so that the most salient features of

the data can be modeled. In the limit M D, any regres-

sion function can be represented by (1), and any density

can be represented by (2) (independent of the initial model

but even for moderate H, functions of those types constitum

rich classes. In addition, the choice of the initial model

permits the user to introduce any knowledge (s)he may have

concerning the data, thereby allowing a further reduction

in bias.

- As a data-analytic tool, projection pursuit procedures pro-

vide a set of directions 11...%M for exploring the differ-

ences between the initial model and the data. The fact tat

at each stage the direction is chosen, for which the current

model least adequately describes the data, makes them good

candidates for that purpose. A graphical comparison of the

projections of model and data, along with knowledge of the

initial model, can yield considerable insight into the mul-

tivariate data distribution. Pictorial representations of

each of the augmenting functions am respectively f.9 along

with the particular directions over which they vary, can

also be quite informative since it is these functions that

actually comprise the model.

There are situations in which projection pursuit proced-

ures can be expected not to perform well. Examples of regres-

sion functions requiring a large number of terms in equation

(1) are those with multiple peaks. Examples of unfavorable

density functions are those with highly concave isopleths or
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vith sperically nested isopleths of the same de:sity value.

In addition to regression and density estimation, the pro-

jection pursuit paradigm can be applied to the problems of

classification and robust estimation of covariance matrices.

All projection pursuit procedures use the same set of basic

operations, projection pursuit and model update. This should

allow the design of an interactive system for analysis of mul-

tivariate data that covers a wide range of problems and yet is

easy to learn and simple to operate.
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